
Relational algebra
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By Marina Barsky



Relations: what are they?

• Relations are records of related facts or properties 
for each entity in the entity set

• How the facts are related is defined through the list 
of attributes

• The facts themselves are represented as tuples of 
values – one value for each attribute



Facts required to be different –
relation is a SET

• There are no two completely identical tuples in a 
given relations

• Each relation is a set of tuples – no duplicates



Student

Consider an example

Student (name, country, GPA)

Couse (topic, year)

Professor (name, topic)

RegisteredFor (name, topic)

Teaches (name, topic)

Professor

GPAname

name rank

country

Course

yearname



Sample instances for each relation

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor

Course

Topic Year

Algorithms 2

Python 2

Databases 3

GUI 3

Teaches

Name Topic

Dr. Monk Algorithms

Dr. Pooh Python

Dr. Patel Databases

Dr. Patel GUI

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI



Core operators of 
relational algebra



Slice operations: Projection

S=attribute list(R)



Produces from relation R a new 
relation that has only the A1, …, 
An columns of R. 



Projection: example
Query: list names of students

Student

SIN Name GPA Country

111 Bob 3 Canada

222 John 3 Britain

333 Tom 3.5 Canada

444 Maria 4 Mexico

S= Name(Student)

S

Name

Bob

John

Tom

Maria



Slice operations: Selection

S=condition ( R )

Produces a new relation with those 
tuples of R which satisfy condition 
C. 



Selection example. 
Query: list students with GPA >3

Student

Name GPA Country

Bob 3 Canada

John 3 Britain

Tom 3.5 Canada

Maria 4 Mexico

S = gpa>3 (Student)

S

Name GPA Country

Tom 3.5 Canada

Maria 4 Mexico



Join operation: Cartesian product (Cross-
product)

T=R x S

X

1. Set of tuples rs that are formed  
by choosing the first part (r) to be 
any tuple of R and the second part 
(s) to be any tuple of S. 

2.Schema for the resulting relation 
is the union of schemas for R and S. 

3.If R and S happen to have some 
attributes in common, then prefix 
those attributes by the relation 
name.



Cartesian product example

T=Course x Professor

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor

Course

Topic Year

Algorithms 2

Python 2

Databases 3

GUI 3



Cartesian product output

Algorithms 2

Python 2

Databases 3

GUI 3

Topic Y Name Rank

Algorithms 2 Dr. Monk Professor

Algorithms 2 Dr. Pooh Assoc. Professor

Algorithms 2 Dr. Patel Assist. Professor

Python 2 Dr. Monk Professor

Python 2 Dr. Pooh Assoc. Professor

Python 2 Dr. Patel Assist. Professor

Databases 3 Dr. Monk Professor

Databases 3 Dr. Pooh Assoc. Professor

Databases 3 Dr. Patel Assist. Professor

GUI 3 Dr. Monk Professor

GUI 3 Dr. Pooh Assoc. Professor

GUI 3 Dr. Patel Assist. Professor



1.The result is constructed as 
follows:

a)Take the Cartesian product 
of R and S.

b) Select from the product 
only those tuples that satisfy 
the condition C.

2.Schema for the result is the 
union of the schema of R and S,
with “R” or “S” prefix as 
necessary.

Combining Cross-product with 
selection 

T=σcondition (R x S)

X

σ



Example. 
Query: Dr. Monk wonders whether he has to teach a multi-cultural group of 
students

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4 Teaches

Name Topic

Dr. Monk Algorithms

Dr. Pooh Python

Dr. Patel Databases

Dr. Patel GUI

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)

ClassInfo= σ Student.name=AlgoList.name AlgoList x Student

ClassInfo

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)

Countries=π country (ClassInfo)

ClassInfo

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Countries

Country

Canada

BritainClassInfo= σ Student.name=AlgoList.name AlgoList x Student



Cross-product with selection 

T=σcondition (R x S)

X

σ



T= R       condition S

Shortcut: Theta-join 

Shortcut for
T=σcondition (R x S)

X

σ

1.The result of this operation is 
constructed as follows:

a)Take the Cartesian product 
of R and S.

b) Select from the product 
only those tuples that satisfy 
the condition C.

2.Schema for the result is the 
union of the schema of R and S,
with “R” or “S” prefix as necessary.



T= R       R.A = S.B S

Subtype of theta-join: Equijoin

Shortcut for
T=σ R.A = S.B (R x S)

X

σ

1.Equijoin is a subset of 
theta-joins where the join 
condition is equality



R      S

Let A1, A2,…,An be the attributes in both the schema of R and 
the schema of S. 

Then a tuple r from R and a tuple s from S are successfully 
paired if and only if r and s agree on each of their common 
attributes A1, A2, …, An. 

Special case of equijoin: 
Natural Join

Still the same meaning as:
T=σ R.A = S.A (R x S),
but common attributes are not duplicated as in Cartesian 
Product



Set Operations on Relations

R  S, the union of R and S, is the set of tuples that are in R 
or S or both. 

R  S, the difference of R and S, is the set of tuples that are 
in R but not in S. 

Note that R  S is different from S  R.

R  S, the intersection of R and S, is the set of tuples that 
are in both R and S.



Condition for set operators

Set operators can operate only on two union-compatible 
relations

Two relations are union-compatible if they have the same 
number of attributes and each attribute must be from the 
same domain



Union

T=R  S

R S

R U S



Union example.
Query: list names of all people in the department

Can we do ?
T=Student  Professor

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor



Union example.
Query: list names of all people in the department

Student

Name

Bob

John

Tom

Maria

Professor

Name

Dr. Monk

Dr. Pooh

Dr. Patel

T=  name (Student)   name (Professor)

Note: if attributes in 2 operands have different names, the names of the left 
relation are used in the union (PostgreSQL)



Difference

R  S

R - S

R S



Difference example. 
Query: Who is registered in the Database course but not in the 
Algorithms?

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI

First do some selections:
A=σ topic=algorithms (RegisteredFor)
D=σ topic=databases (RegisteredFor)

Then take D – A



Intersection

T=R  S
R S

R S

R  S



Intersection example. 
Query: Which courses are taught at both Universities?

Course

Topic

Algorithms

Python

Databases

GUI

Alright University

Course

Topic

Algorithms

Java

Databases

Networks

Human-Computer Interaction

EvenBetter University

T=  topic (A.course)   topic (B.course)



Intersection is a shortcut for R – (R – S)

R S

R-S

R - S (are in R but not in S)

R S

R - (R-S)

R  S
R  S can be 
derived using 
2 difference 
operators
R – (R – S)



Renaming Operator

S(A1,A2,…,An) (R)

1. Resulting relation has exactly the same tuples as R, but the 
name of the relation is S. 

2. Moreover, the attributes of the result relation S can be re-
named A1, A2, …, An, in order from the left. 

3. If not all attributes are renamed, can specify renamed 
attributes:

S, a → a1, b → b1 (R)



Renaming: example

• Find all true friends in twitter 
dataset

• By renaming T we created two 
identical relations R and S, and we 
now extract all tuples where for 
each pair X → Y in R there is a pair 
Y → X in S

T (uid1, uid2)

A → B
B → A
B → C
A → C
C → B

πR.uid1, R.uid2 σR.uid1=S.uid2 AND R.uid2 = S.uid1(R (T) x S (T)) 



Core operators of relational 
algebra

Selection σ

Projection π

Cross-product x

Union U
Difference –
Renaming ρ



Core operators – sufficient to express 
any query in relational model

Edgar “Ted” Codd, a mathematician at IBM in 1970, proved 
that any query can be expressed using these core operators: 
σ, π, x, U, –, ρ

A Relational Model of Data for Large Shared Data 
Banks". Communications of the ACM 13 (6): 377–387

The Relational model is precise, implementable, and we 
can operate on it (combine, optimize)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM


The same applies to relational algebra: any RA operator returns 
a relation, so we can compose complex queries by operating 
on these intermediate results:

πname,gpa(σgpa>3.5(Student))

σgpa>3.5(πname,gpa( Student))

Are these logically equivalent?

Relational algebra: closure
In regular algebra the result of every operator is another 
number, and we can compose complex expressions using basic 
operators +,-,x,/:

a2 –b2 = (a-b)x(a+b)



Relational algebra equivalences

• Commutative: R ⋈ S = S ⋈ R 

• Associative: (R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

• Splitting: σC ∩ D (R) = σC (σD (R))

• Pushing selections: σC (R ⋈D S) = σC (R) ⋈D (S), if condition C 
applies only to R

• …



Example of a valid RA transformation

• Consider R(A,B) and S(B,C) and the expression below:

A=1 ∩ B<C (R ⋈ S) 

1. Splitting AND A=1 (B < C(R ⋈ S))

2. Push  to S A=1 (R ⋈ B < C(S))

3. Push  to R A=1 (R) ⋈ B < C(S)



Intermediate variables

As in traditional algebra,

x2 +2x +1 = 0

D = 4 – 4 = 0

x = -2 + √D = -2

we can use temporary variables to store the results of 

intermediate queries. These temporary variables hold results of 

what is called a subquery

T1 = A=1 (R) 

T2 = B < C(S)

Result = T1 ⋈ T2



We can visualize an RA expression as 
a tree

π𝐵

R(A,B) S(B,C)

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 )

Bottom-up tree traversal = order of operation execution! 

Linear notation

Tree notation



PCRS notation for RA exercises

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 )

\project_{B} (R \natural_join S);

• To write more complex queries – you would need to learn 
and exercise a special PCRS syntax

• However, this syntax does not have any further use except 
of making the marking of your homework easier

• Thus, we will do PCRS exercises only for real SQL



Why do we care 
about relational algebra?

Why not learn just SQL?

SQL is a query language that implements Relational Algebra



16 double discriminant = Math.pow(b,2) - 4*a*c;

17 double x1 = (-b + Math.sqrt(discriminant))/(2*a);

18 double x2 = (-b - Math.sqrt(discriminant))/(2*a);

19 double i=Math.sqrt(-1);

20 double x3 = (-b + (Math.sqrt(discriminant))*i)/(2*a);

21 double x4 = (-b + (Math.sqrt(discriminatn))*i)/(2*a);

22

23

24 if (discriminat > 0 ){

25 System.out.println("there are two solutions:" +x1+"and"+x2);

26 }

Why not learn how to solve quadratic 
equations looking only at a java 
implementation?



RA is a basis for logical query 
optimization

title

starname=name AND birthdate LIKE ‘%1960’

StarsIn



MovieStar

title

StarsIn MovieStar

starName=name

birthdate LIKE ‘%1960’

Which query is more efficient?



Extended operators of 
Relational Algebra
can be derived from core operators



Outer join

Motivation
• Suppose we join R ⋈ S.
• A tuple of R which doesn't join with any tuple of S is said to 

be dangling.
• Similarly for a tuple of S.
• Problem: We loose dangling tuples. 

Outerjoin
• Preserves dangling tuples by padding them with a special 

NULL symbol in the result.



• R      C S – This is the full outerjoin: Pad dangling tuples from 
both tables.

• R      C S – left outerjoin: Only pad dangling tuples from the left 
table.

• R      C S – right outerjoin: Only pad dangling tuples from the 
right table.

Types of outer join



T= R       condition S

Left outer join

1. For each tuple in R, include 
all tuples in S which satisfy 
join condition, but include 
also tuples of R that do not 
have matches in S

2. For this case, pair tuples of 
R with NULL

X

NULL

σ



Outer join: example

age zip disease

54 99999 heart

20 44444 flue

33 66666 lung

age zip job

54 99999 lawyer

20 44444 cashier

Anonymous patient P Anonymous occupation O

age zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

T= P        O



Expressing constraints in 
Relational Algebra



Relational algebra as a constraint 
language
• If R is a query in relational algebra, then R=ø is a constraint –

no results of such query should exist

• If R and S are expressions of relational algebra, then R ⊆ S  is 
a constraint that says that every tuple in the result of R 
should be also in S (R-results are a subset of S-results)



Expressing foreign key constraints

• If we expect that every value of attribute A in R appears as 
attribute B in S (R(A) is a foreign key referencing S(B)), then 
we express this in RA as follows:

A(R) ⊆ B(S)

• Or a shortcut:

R[A] ⊆ S[B]



Example: movies

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

FK constraint in RA notation:

starName(StarsIn) ⊆ name(MovieStar)



Expressing primary key 
constraints
• If A is a primary key of relation T, and B is any other non-key 

attribute, then:

σR.A=S.A AND R.B ≠ S.B(R (T) x S (T)) = ø

• This expresses an idea that if we pair all tuples of relation T 
with itself, there could not be 2 tuples that agree on A but 
disagree on B. 

• Value of A completely identifies all other attributes, A is a 
primary key for B



Expressing value constraints

Examples of domain constraints for Movies:

• The only permitted values of gender are ‘F’ or ‘M’

σgender≠’F’ AND gender≠’M’ (movieStar) = ø

• The length of a movie cannot be less than 60 nor more than 
250

σlength<60 OR length>250(movie) = ø



Estimating size of 
resulting relations



Size estimation examples 1
Given relation R with N tuples and relation S with M tuples, what is the 
maximum and minimum size of the output to the following queries:

c (R)

• Min: 0 (no tuples satisfy the condition)

• Max: N

π A (R)

• Min: 1

• Max: N

What if A is a key?

• Min: N

• Max: N



Size estimation examples 2

Given relation R (A,B) with N tuples and relation S(B,C) with M 
tuples, tell what is the maximum and minimum size of the 
output to the following queries

R x S

• Min: NM

• Max: NM

R ⋈ S

• Min: 0 (no tuples to join)

• Max: NM (all tuples of S join with all tuples of R on their 
common attribute – equal values of B in both relations )



Sample test question

If I have a relation R with 100 tuples and a relation S with 
exactly 1 tuple, how many tuples will be in the result of 

R         S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100



RA exercises
Tutorial



Running example: 
Movies database
Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);



Simple queries

1. Find producer of ‘Star wars’

2. Title and length of all Disney movies produced in 
year 1990

3. For each movie’s title produce the name of this 
movie’s producer



Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);

4. Find all name pairs in form (movie star, movie producer) 
that live at the same address. 

Star=ρstar,staraddress (πname, address (MovieStar))

Prod=ρprod, prodaddress (πname, address (MovieExec))

πstar,prod((Star)⋈staraddress=prodaddress AND star !=prod(Prod))



MORE COMPLEX 
QUERIES
Movies



Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);

5. Find the names of all producers who did NOT produce ‘Star wars’

Simple:

πname(MovieExec) –

πname((Movie)⋈title=‘Star wars’ AND producerC=cert(MovieExec))

More efficient (smaller Cartesian product)

πname((σtitle=‘Star wars’(Movie))⋈producerC!=cert(MovieExec))



6. Find all name pairs in form (movie star, 
movie producer) that live at the same address. 
The same person can be both a star and a 
producer. Now, try to eliminate palindrome 
pairs: leave (a,b) but not both (a,b) and (b,a).



6 – solution 1. Find all name pairs in form (movie star, movie producer) 
that live at the same address. The same person can be both a star and 
the producer. Now, try to eliminate palindrome pairs: leave (a,b) but 
not both (a,b) and (b,a).

1.    Star=ρname→star(MovieStar)

Prod=ρname→prod(MovieExec)

2.    Pairs = πstar,prod((Star)⋈Star.address=Prod.address AND star!=prod(Prod))

3.    PA = σstar<prod(Pairs)  // Pairs in Ascending order

PD = σstar>prod(Pairs) //Pairs in Descending order

4.    Palindrome = (PA)⋈PA.star=PD.prod AND PA.prod=PD.star (PD)

5.    Pairs – πPD.star,PD.prod (Palindrome)

Example on 
the next page



Star

star addr

A 1

B 1

C 2

F 3

Prod

prod addr

A 1

B 1

D 2

E 3

1
Star=ρname→star(MovieStar)
Prod=ρname→prod(MovieExec)

Step 1. Renaming



Step 2. Cartesian 
product: 
Star x Prod

Star Addr Prod Addr

A 1 A 1

A 1 B 1

A 1 D 2

A 1 E 3

B 1 A 1

B 1 B 1

B 1 D 2

B 1 E 3

C 2 A 1

C 2 B 1

C 2 D 2

C 2 E 3

F 3 A 1

F 3 B 1

F 3 D 2

F 3 E 3

2.    Pairs = πstar,prod

((Star) 
⋈Star.address=Prod.address AND star!=prod 

(Prod))

Pairs

Star Prod

A B

B A

C D

F E



Step 3. Sorted pairs

Pairs

Star Prod

A B

B A

C D

F E

3.    PA = σstar<prod(Pairs)  // Pairs where Star < Prod
PD = σstar>prod(Pairs) //Pairs where Star > Prod

PA

Star Prod

A B

C D

PD

Star Prod

B A

F E



Step 4. Cartesian product PA x PD

Palyndrome (only colored tuple qualify)

PA.Star PA.Prod PD.Star PD.Prod

A B B A

A B F E

C D B A

C D F E

4.    Palindrome = (PA)  ⋈PA.star=PD.prod AND PA.prod=PD.star (PD)

PA

Star Prod 

A B

C D

PD

Star Prod

B A

F E

x



Step 5. Remove palindrome tuples 
from pairs

5.    Pairs – πPD.star,PD.prod (Palindrome)

Pairs

Star Prod

A B

B A

C D

F E

result

Star Prod

A B

C D

F E

Palyndrome

PA.Star PA.Prod PD.Star PD.Prod

A B B A-



6. Another solution proposed in 
class
Star=ρname→star(MovieStar)

Prod=ρname→prod(MovieExec)

SP = Star ⋈Star.address=Prod.address AND star!=prodProd

PS = Prod ⋈Star.address=Prod.address AND star!=prod Star

PAIRS = ρ star → name1, prod → name2 (SP)  

U 

ρ prod → name1, star → name2 (PS) 

Result = σ name1 < name2 (Pairs)

Example on 
the next page



Star

star addr

A 1

B 1

C 2

F 3

Prod

prod addr

A 1

B 1

D 2

E 3

Star=ρname→star(MovieStar)
Prod=ρname→prod(MovieExec)

Step 1. Renaming 

The renaming is done for readability - to distinguish names:

MovieStar.name → Star.star

MovieExec.name → Prod.prod



Step 2. Join Star ⋈ Prod and Prod 
⋈ Star on address
SP = Star ⋈Star.address=Prod.address AND star!=prodProd

PS = Prod ⋈Star.address=Prod.address AND star!=prod Star

Star

star addr

A 1

B 1

C 2

F 3

Prod

prod addr

A 1

B 1

D 2

E 3

SP

star prod

A B

B A

C D

F E

PS

prod star

A B

B A

D C

E F



Step 3. Union (set union) of SP 
and PS
PAIRS = ρ star → name1, prod → name2 (SP)  U ρ prod → name1, star → name2 (PS) 

PAIRS

name1 name 2

A B

B A

C D

F E

D C

E F

SP

star prod

A B

B A

C D

F E

PS

prod star

A B

B A

D C

E F



Step 4. Select only one instance of 
palindrome pair – where 
name1<name2

Result = σ name1 < name2 (Pairs)

PAIRS

name1 name 2

A B

B A

C D

F E

D C

E F

Result

name1 name 2

A B

C D

E F

We don’t know at this point who is a star 
and who is a producer, but we can later do 
the selection for each name in both tables 
to figure out if this is important for our 
query



Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);

7. Find names of producers that produced at least one movie 
for each of different studios: Disney and MGM

πname[(σstudioName=‘Disney’(Movie))⋈producerC=cert(MovieExec)]

∧
πname[(σstudioName=‘MGM’(Movie))⋈producerC=cert(MovieExec)]



Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);

8. Find all movie titles for which there is no producer entry in 
MovieExec table

πtitle(Movie) – πtitle ((Movie)⋈producerC=cert(MovieExec))



Movie ( title, year, length, inColor, studioName, producerC)

MovieStar (name, address, gender, birthdate)

StarsIn (movieTitle, movieYear, starName)

MovieExec (name, address, cert, netWorth)

Studio (studioname, presc);

9. Find the names of all stars which starred in at least 2 
movies (according to our database)

1. S1=ρtitle1,year1,name1(StarsIn)

S2=ρtitle2,year2,name2(StarsIn)

2. (S1) ⋈name1=name2 AND (title1 != title2 or year1!=year2)(S2) 



Relational algebra for 
bags – basis for SQL

⋈. ⋈. ⋈.R



Relational Algebra on Bags

• A bag is like a set, but an element may appear more than 
once.

– Multiset is another name for “bag.”

• Example: 

– {1,2,1,3} is a bag.  

– {1,2,3} is also a bag that happens to be a set.

• Bags also resemble lists, but order in a bag is unimportant.

– Example: 

• {1,2,1} = {1,1,2} as bags, but 

• [1,2,1] != [1,1,2] as lists.



Why bags?

• SQL is actually a bag language.

• SQL will eliminate duplicates, but usually only if you ask it to 
do so explicitly.

• Some operations, like projection or union, are much more 
efficient on bags than sets.

– Why?



Operations on Bags

• Selection applies to each tuple, so its effect on bags is like its 
effect on sets.

• Projection also applies to each tuple, but as a bag operator, 
we do not eliminate duplicates.

• Products and joins are done on each pair of tuples, so 
duplicates in bags have no effect on how we operate.



Example: Bag Selection

R( A B  ) S( B C  )
1 2 3 4
5 6 7 8
1 2

A+B<5 (R) = A B
1 2
1 2



A (R) = A
1
5
1

Bag projection yields always 
the same number of tuples 
as the original relation. 

Example: Bag Projection

R( A B  ) S( B C  )
1 2 3 4
5 6 7 8
1 2



• Each copy of the tuple 
(1,2) of R is being paired 
with each tuple of S. 

• So, the duplicates do not 
have an effect on the 
way we compute the 
product.

R  S = A R.B S.B C
1 2 3 4
1 2 7 8
5 6 3 4
5 6 7 8
1 2 3 4
1 2 7 8

Example: Bag Product

R( A B  ) S( B C  )
1 2 3 4
5 6 7 8
1 2



Bag Union

• Union, intersection, and difference need new definitions 
for bags.

• An element appears in the union of two bags the sum of 
the number of times it appears in each bag.

• Example: 

{1,2,1}  {1,1,2,3,1} 

= {1,1,1,1,1,2,2,3}



Bag Intersection

• An element appears in the intersection of two bags the 
minimum of the number of times it appears in either.

• Example: 

{1,2,1}  {1,2,3} 

= {1,2}.



Bag Difference

• An element appears in difference A – B of bags as many 
times as it appears in A, minus the number of times it 
appears in B.

– But never less than 0 times.

• Example: {1,2,1} – {1,2,3} 

= {1}.



Beware: Bag Laws != Set Laws

Not all algebraic laws that hold for sets also hold for bags.

Example

• Set union is idempotent, meaning that 

S  S = S.

• However, for bags, if x appears n times in S, then it appears 
2n times in S  S.

• Thus S  S != S in general.



The Extended Algebra (for bags)

1. : eliminate duplicates from bags.

2. : sort tuples.

3. : grouping and aggregation.



Example: Duplicate Elimination

R = A B
1 2
3 4
1 2

(R) = A B
1 2
3 4

R1 := (R2)

R1 consists of one copy of each tuple that appears in R2 one 
or more times.



Sorting

R1 := L (R2)
• L is a list of some of the attributes of R2.

R1 is the list of tuples of R2 sorted first on the value of the 
first attribute on L, then on the second attribute of L, and so 
on.



Aggregation Operators AGG

• They apply to entire columns of a table and produce a 
single result.

• The most important examples: 
• SUM 
• AVG 
• COUNT
• MIN
• MAX



Example: Aggregation

R = A B
1 3
3 4
3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
MIN(B) = 2
AVG(B) = 3



Grouping Operator

R1 := L (R2)

L is a list of elements that are either:
1. Individual (grouping) attributes.
2. AGG(A), where AGG is one of the aggregation 

operators and A is an attribute.



Example: Grouping/Aggregation

R = A B C
1 2 3
4 5 6
1 2 5

 A,B,AVG(C) (R) = ??

First, group R :
A B C
1 2 3
1 2 5
4 5 6

Then, average C within
groups:

A B AVG(C)
1 2 4
4 5 6



L(R)  - Formally

• Group R according to all the grouping attributes on list L.
• That is, form one group for each distinct list of values for 

those attributes in R.

• Within each group, compute AGG(A) for each aggregation on 
list L.

• Result has grouping attributes and aggregations as attributes:  
One tuple for each list of values for the grouping attributes and
their group’s aggregations. 


